NSES Content Standard Unifying Concepts
and Processes:
Evidence, models and explanation Grades K12, page 117 Models are tentative schemes or structures that correspond to real objects,
events, or classes of events, and that have explanatory power. Models help
scientists and engineers understand how things work. Models take many forms,
including physical objects, plans, mental constructs, mathematical equations,
and computer simulations.

Benchmark 8E The Designed World: Information
Processing
Grades 912, page 203
Computer modeling explores the logical consequences of a set of instructions
and a set of data. The instructions and data input of a computer model
try to represent the real world so the computer can show what would actually
happen. In this way, computers assist people in making decisions by simulating
the consequences of different possible decisions.
Benchmark 9B The Mathematical World:
Symbolic Relationships
Grades 912, page 220
Any mathematical model, graphic or algebraic, is limited in how well
it can represent how the world works. The usefulness of a mathematical
model for predicting may be limited by uncertainties in measurements, by
neglect of some important influences, or by requiring too much computation.
Benchmark 9E The Mathematical World:
Reasoning
Grades 35, page 232
One way to make sense of something is to think how it is like something
more familiar.
Benchmark 9E The Mathematical World:
Reasoning
Grades 68, page 233
An analogy has some likenesses to but also some differences from the
real thing.
Benchmark 11B Common Themes: Models
Grades 68, page 269
Models are often used to think about processes that happen too slowly,
too quickly, or on too small a scale to observe directly, or that are too
vast to be changed deliberately, or that are potentially dangerous.
Benchmark 11B Common Themes: Models
Grades 912, page 270
The basic idea of mathematical modeling is to find a mathematical relationship
that behaves in the same ways as the objects or processes under investigation.
A mathematical model may give insight about how something really works
or may fit observations very well without any intuitive meaning.
Benchmark 11B Common Themes: Models
Grades 912, page 270
Computers have greatly improved the power and use of mathematical models
by performing computations that are very long, very complicated, or repetitive.
Therefore computers can show the consequences of applying complex rules
or of changing the rules. The graphic capabilities of computers make them
useful in the design and testing of devices and structures and in the simulation
of complicated processes.
Benchmark 11B Common Themes: Models
Grades 912, page 270
The usefulness of a model can be tested by comparing its predictions
to actual observations in the real world. But a close match does not necessarily
mean that the model is the only "true" model or the only one that would
work.
See also Chapter 11 Common Themes, Section B: Models, for precursor ideas.