Curriculum, continued defined, 43, 73-74
and general principles of design, 29
overstuffing/overcrowding of, 211, 217
planning, 75-76
reform, 238
stubbornness of, 7-9
Curriculum blocks, 97-98, 123, 147, 268
assembly software, 114
configuring, 112-113, 116
databases, 97, 98, 102-104, 108-118, 128-141
defined, 43
what are?, 124-127
descriptions for, 104, 128-141
education policies, 107-108
examples, 125-141
fitting blocks into curriculum spaces, 115
ideas for, 145-146
learning goals and, 134, 139
professional development and, 106-107, 121
properties of, 127-128
research and development, 143-144
selection in school-district scenarios, 155, 156-157, 162-163, 168
selection strategy, 109-112
shapes, variety of, 110, 111
sources of, 142
teachers’ role in developing, 142-145
where will curriculum blocks come from?, 141-146
Curriculum committees
curriculum coherence and, 244
role in curriculum design, 65, 69, 174-175
in school-district scenarios, 158, 160, 162, 166-167
Curriculum components, 123, 124
costs, 66
Curriculum concepts, 57, 62-63
defined, 43
models, 58-61
Curriculum connections
among science, mathematics, and technology, 255-257
with other subjects, 257-263
within the sciences, 252-255
Curriculum design, 41, 71
attributes of, 43-44
benefits and costs, 66
by assembly, 97, 98-101, 108-109
coherence in, 65
compartmentalizing the design challenge, 64-65
competer-aided curriculum design system, 102-104, 108-118
compurers and, 271
concepts, 154-155, 158, 160-162, 167-168
conceptualizing, 56-57, 62-63
congruence with implemented curriculum, 69
constraints in, 55-56
copying an existing design, 63-64
databases, 102-104, 108-118
decisions, 66, 159, 164-165, 170-171
defined, 41, 43, 124
developing a, 63-68
examples, 41-43
external committees, 69-70
feasibility, 54-55
goals, 45-55, 56, 70, 155-156, 163, 168
implementing, 68-70
internal committees, 69
investment, 46, 48
learning results, 70
long-term consequences, 71
rationale for, 48-49
refining, 68-71
rise, 66-67
role of teachers in, 151, 153, 158, 163, 166, 168, 268, 270-271
in school-district scenarios, 150, 151, 153-155, 156, 157-159, 160-162, 163-165, 167-171
software for, 69, 102-104, 110, 271
specifications, 44-56
specificity, 49-50, 54
strategies, 63
teacher committees in, 174-175
trade-offs, 67-68
Curriculum materials, learning to analyze, 190-196
Curriculum monitoring
assessment and, 208
needs and resources, 91-92
Curriculum reform, 265, 268
approaches to, 172-177
long-term efforts, 266
need for, 3-6
student learning goals, 185-186
three stories on, 149-152, 171
inner-city school-district scenario, 155-159
rural school-district scenario, 165-171
suburban school-district scenario, 159-165
Curriculum-resource management, 118-120
Curriculum specifications, 73, 92-93
for content, 84-99, 92
defined, 43
for independent study, 81, 82
for instructional format, 80-83
for instructional resources, 91
for monitoring, 95-97
for operation, 90, 92, 93
for projects, 81, 82-83
in school-district scenarios, 155-156, 162-164, 168-170
schedule variation, 78-80
for seminars, 81
for structure, 74-83, 92
student pathways, 90

Curriculum theory, 47

Design
adapting, 26
alternatives, 26
attributes of, 17-20
benefits and costs, 31-32
compartmentalizing design components, 28-29
concepts, 24-26
constraints, 20, 22, 23-24, 55
copying an existing design, 27-28
curriculum (See also Curriculum design), 15-16, 17, 18, 19, 21, 22, 23, 28
decisions, 31-34
developing a, 26-34
fallacy, 33
feedback, 36
general principles, 37
goals, 20, 21-22
process, 18-19, 34
refining the designed product, 34-36
risk, 32-33
specifications, 20, 24
stages of, 19-20
strategies of, 27-31
testing in the development stage, 30-31
trade-offs, 33-34
Design team/design committee/study group, 77
See also Curriculum committees
Discipline-based curriculum, 65, 86, 87, 88
Electives, core studies and, 76-77
Electronic conferencing, 181
Environmental curriculum, 62
Evaluation of curriculum blocks, 139
curriculum design, 205
curriculum materials, 192-196
instructional materials and curriculum reform, 193
student learning, 206-207
trade-offs in cutting topics, 218
Goals (See also Learning goals)
curriculum, 45-46
design, 20, 21-22
sharing with students, 82
Grade range, curriculum design and, 65
Grade study, 181
Growth-of-understanding maps/strand maps, 183, 184, 187, 188
role in curriculum coherence, 248-251
Hands-on curriculum, 62
High-tech curriculum, 57
Human resources curriculum blocks and, 136
curriculum resources and, 119-120
Incrementalism, 97
Independent study, 81, 82, 198, 199
Individualized curriculum, 62
Inquiry curriculum, 62
Instructional effectiveness, criteria for estimating, 195
Instructional format/strategies, 80-81
alternatives, 197-199
hands-on activities as curriculum goals, 46
in curriculum blocks, 128
independent study, 81, 82, 198, 199
Integrated, 86-88, 198, 251
peer teaching, 198, 199
projects, 80-83, 198, 199
seminars, 81, 198, 199, 200-201
Instructional materials (See also Curriculum blocks)
adoption, 243
costs, 66
evaluation, 192, 196
template for describing, 128-141
Instructional resources in curriculum operation, 91
Instructional time blocks, 78
Instructional topics, analyzing, 187, 189-190
Instructional units, strand maps and, 249-250
Integrated curriculum/courses, 86-88, 198, 251
Internet, 185, 208
Language-immersion curriculum, 62
Learning assessment and monitoring classroom, 206-207
becoming familiar with research on, 190, 292
learning results, 70
learning to analyze curriculum materials, 192-196
topics as context for, 216
Learning goals, 127, 175
alignment with curriculum, 203-205
benchmarks, 118
in Benchmarks for Science Literacy, 52-53, 185, 186, 187
coherent sets of, 218-240
current arguments about, 51
curriculum blocks and, 134, 139
curriculum design and, 49-55, 56, 70
investment in, 46, 48
level of specificity, 49-50, 54, 193
national standards, 186, 193
INDEX

Learning goals, continued in Science for All Americans, 48-49, 52-53, 185, 187, 188
and technical vocabulary, 233
in template for describing curriculum block, 134
as topics, 216, 217
understanding student learning goals, 185-187
analyzing instructional topics, 187, 189-190
conducting benchmark workshops, 190
shedding light on a particular benchmark, 288
studying strand maps, 217
using Project 2061 tools to clarify a benchmark, 189
Learning-to-learn curriculum, 62
Lecture-discussion-laboratory format, 80
Literacy goals, (See also Learning goals) 238, 240
Literature, science and, 261
McFarland, Wisconsin Center concept, 60-61
Modular scheduling, 199
National Academy of Sciences, 46, 238, 240
National Council for Social Studies, 151
National Council of Teachers of Mathematics, 238
National Science Foundation, 166
National Science Teachers Association, 89
Natural sciences, subject-matter coherence and, 252-253
Nutrition-analysis software, 116-118
Peer teaching, 198, 199
Philadelphia Center concept, 59-60
Philosophy of education, 47
Physical education, science and, 242, 261-262
Planning, curriculum across grade levels, 243-244
across subjects, 251-252
Policy, 107-108
Principles of teaching and learning
philosophical vs. psychological, 252
philosophy of education, 47
psychology of learning, 47
research on, 190
Professional development
conducting benchmark workshops, 190
content of Resources for Science Literacy, 182
curriculum blocks and, 106-107, 121
designing Project 2061 professional-development workshops, 191
increasing faculty science literacy through, 179-185
schools, 144
strand maps, 183, 184, 187, 188
Project 2061 tools, 10-13
Atlas of Science Literacy, 76, 136, 161, 206, 226, 234, 248
Benchmarks for Science Literacy assessments in, 207
curriculum blocks, 106, 133, 134, 135, 141, 142, 145
curriculum coherence, 240, 241, 242, 244-248, 254, 255, 256-257, 259, 261, 262, 263
curriculum-design concepts, 46, 47, 50, 54-55, 70
curriculum-materials evaluation, 139, 196
curriculum-reform concepts, 151, 163, 168, 175-176, 266
curriculum structure, 76
database, 102
learning goals, 52-53, 185, 186, 187, 188
specifications for science education, 105-106
technical vocabulary, 228, 229, 232, 233
topics reduction, 211, 213, 214, 218, 219, 220, 225, 226
Benchmarks on Disk, 109, 145, 187, 234
Blueprints for Reform, 105, 145, 269
Designs on Disk, 90
alternative instructional formats, 198
alternative time arrangements, 199, 201
case studies, 207, 208
curriculum blocks, 65, 103, 142, 145
curriculum coherence, 253, 254, 255, 256, 260
curriculum design, 65, 69, 109, 119, 120
learning goals, 187
science literacy, 181
technical vocabulary, 232, 233
topics reduction, 215, 217, 226, 227
Resources for Science Literacy: Professional Development, 107, 190
CD-ROM, 183, 190, 240, 254
curriculum coherence, 240, 254, 260
curriculum design, 107, 190
professional development, 181, 182, 183, 187
professional-development workshops, 191
research, 192
student learning, 145
topics reduction, 225
Science for All Americans curriculum blocks in, 106, 135
curriculum coherence, 238, 239, 240, 248, 252, 254, 255, 256-257, 258, 260, 263
curriculum-design concepts, 46, 47, 48, 50
curriculum-reform concepts, 151, 175, 266
database, 102
design concepts, 18, 19, 23, 29, 30, 31
learning goals, 48-49, 52-53, 185, 187, 258, 260
research in, 192
Science literacy, 180, 181, 182, 183, 185
technical vocabulary, 228, 229, 233
topics reduction, 213, 225
Web site, 105, 181, 187, 265
Workshop Guide, 182, 191
Projects, student, 81, 82-83, 198, 199
Reading groups, 181
Record-keeping, 120
Reform (See Curriculum reform)
Reform movements, 208-209
Research on learning, 192
Benchmarks, 141, 211
cognitive research, 141, 184, 191, 240
Cognitive research, 141, 184, 191, 240
Resources
Curriculum-resource management, 118-120
financial, 48
human, 119-120, 138
local, 48
material, 118-119, 136, 138
Risk curriculum change, 67
curriculum design, 66-67
design, 32-33
School districts
curriculum designers, 48, 56, 94
curriculum goals, 45
curriculum reform, 150-152
record-keeping, 120
research and development, 144
role in building professional capacity, 179-181, 183, 185, 186, 191, 205
Project 261 C centers, curriculum concepts of,
Georgia C center, 61
Michigan, Wisconsin C center, 60-61
Philadelphia C center, 59-60
San Antonio C center, 60
San Diego C center, 60-61
San Francisco C center, 60
San Francisco cooperatives, 60-61
San Francisco Science Park, 60
San Francisco program, 60
San Francisco science, 60
San Francisco State University, 60
San Francisco University, 60
San Francisco University, 60
San Francisco University, 60
Science and general history, 258-260
and literature, 261
and physical education, 242, 260-262
and social studies, 242, 260-261
and technology applications curriculum, 57
and the arts, 262
and work, 262-263
Science literacy
goals, 238-240
increasing faculty, 180
contents of resources for, 182
courses, 183, 195
readings, 180-181
strands maps, 183, 184
national goals for, 186
Science, mathematics, and technology
education, 70, 237, 242, 255-257, 269
Science, social studies, and physical-education
courses, 242
“Scientific method,” 18
Self-contained classrooms, 199
Self-paced study format, 80
Seminars, 81, 198, 199, 200-201
Social sciences, subject-matter coherence and,
253-254
Social studies, science, and, 242, 260-261
Staff deployment in curriculum operation, 90-91
Stakeholders in education, 48, 173-174
Strand maps
in curriculum coherence, 248-251
draft map, 184
in professional development, 183, 187, 188
Student learning (See also Learning goals)
in Benchmarks, 141
curriculum design and, 55
ideas, 226
monitoring, 206-207
research on, 226
Students
in inner-city scenario, 152-159
in rural school scenario, 165-179
in suburban school scenario, 159-165
Study groups, 181, 183
Subject matter, curriculum design and, 65
Teacher preparation (See also Professional development)
block requirements for, 138
presence, 121
Teachers
and curriculum reform efforts, 180
committees in curriculum coherence, 244
committees in curriculum design, 174-175
diversified teaching roles, 120
and evaluation of instructional materials, 193, 196
and identification of learning goals, 54-55
increasing science literacy, 179-185
Teachers, continued
as the most important resource to the
curriculum, 119-120
participation in school-district scenarios, 151, 153, 158, 161, 163, 166, 168
professional development, 106-107, 121, 179-185
role in curriculum design, 268, 270-271
role in curriculum planning, 243-244
role in cutting major topics, 226-227
role in developing curriculum blocks, 142-145
role in research and development, 143-144
skills, 107
teams, 94-95
of vocational subjects vs. science and mathematics, 263
Teaching hospitals, 144
Technical language/vocabulary
cutting back on teaching, 227-228
list of technical terms and passages, 229-230
process for trimming, 233
student understanding and, 227-228, 233
thinking about, 228, 231, 233
Testing. (See A assessment)
Textbooks
coherence in, 238
developers, 190
science trade books, 107, 181, 182, 200, 201, 258-260
technical terms in, 229-230, 232
textbook-selection committees, 127
topics overload and reduction in, 211, 212, 214, 220, 221-224, 225, 238
Themes
conceptual, 240, 242
cross-cutting/common, 242, 255
science, mathematics, and technology, 256-257
thematic blocks, 146
Time/school time, 211
alternative time arrangements, 199-201
calendar and clock time, 74, 75, 133
schedule variation, 78-80
for teaching and learning, 66
time dimensions for curriculum blocks, 128
time requirement for curriculum blocks, 133
Topics
curriculum, 211-212, 235
cutting major topics, 212
process for cutting topics, 215-220
thinking about major topics, 212-215
different meanings of, 212, 216, 217
main topics for curriculum blocks, 135
pruning subtopics from major topics, 220-224
process for pruning subtopics, 226-227
thinking about subtopics, 225-226
reducing wasteful repetition, 233-235
topic headings, 186
Trade-offs
in curriculum design, 67-68
in cutting topics, 218
in design, 33-34
Traditional lecture-discussion format, 80-81
Traditional topics, 219
Unburdening the curriculum
cutting major topics, 212-220
pruning subtopics from major topics, 220-227
trimming technical vocabulary, 227-233
Work, science and, 262-263
Work-study curriculum, 62
World Wide Web, 181
Project 2061 web site, 105, 181, 187, 265